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Abstract. An approach to study the time-domain scattering by a set of dielectric

cylinders with circular cross section, placed in a semi-infinite medium, is presented.

The illuminating light comes from a pulsed beam impinging onto the cylinders from

outside the medium. The solution is developed in a semi-analytical way, starting from

results based on the Cylindrical Wave Approach pertinent to the case of illumination

by a monochromatic plane wave. The method is numerically implemented to simulate

the scattering response of buried cylinders illuminated by a pulsed Gaussian beam.

In the presented results, the different contributions to the total scattered field are

recognizable, giving account of all the interactions between incident field, target and

interface. The model adopted is well suited to the study, at optical frequencies, of

scattering problems involving biological samples, such as vessels and fibers, embedded

in tissues or immersed in fluids, through fast and accurate electromagnetic simulation.

1. Introduction

In several cases of notable interest in the optical domain, the capability of an accurate

modelling of scattering by cylindrical dielectric objects is a tool that can give important

support to the understanding of the behaviour of a phenomenon or the clarification of the

internal structure of a complex system. Scattering by cylinders has in fact applications

in the analysis of radiative properties and radiation energy transport through fiber

materials [1, 2]. In the time-domain diagnostics through pulsed sources, the time-of-

flight information in the scattered field allows to determine the internal structure of the

tissue. In the field of OCT imaging, many approaches have been proposed.[3]-[9]. In

[6], a Monte Carlo model is applied to the angiographic OCT imaging of small vessels

in microvascular networks. However, radiative transfer is an approximate model, which

neglects mutual interactions between the scatterers. Numerical full-wave models have

been implemented in [7, 8] to simulate image formation in OCT for general samples.

Page 1 of 17 AUTHOR SUBMITTED MANUSCRIPT - JOPT-106148.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Scattering of a pulsed light beams by dielectric buried cylinders 2

An analytical solution for OCT applications is given in [9] for the case of a cylinder in

free space, and time-domain analyses are proposed for plane-wave and Gaussian beam

sources.

The extension of such techniques to cases where the cylindrical targets are

embedded in a semi-infinite medium and the source field is of a different type represents

a significant improvement. Several methods, both analytical and numerical [10]-[22],

have been proposed in the literature to solve the scattering by objects in a semi-

infinite medium in the frequency-domain. The time-domain response of the scattering

by buried cylinders has received attention mainly at the microwave frequencies, due to

the applications to remote sensing with the Ground Penetrating Radar [23, 24], or to

breast cancer imaging [25].

A frequency-domain technique, developed for the simulation of two-dimensional

scattering by buried objects, perfectly conducting either dielectric, is the Cylindrical

Wave Approach (CWA) [16]. To deal with the field scattered by the buried cylinders,

suitable reflected and transmitted cylindrical functions have been introduced as basis

functions [34, 35]. The method has been implemented in the frequency domain to

solve several scattering geometries, i.e., objects buried in a semi-infinite medium [16],

embedded or buried below a dielectric layer [27]-[29], or under a rough surface [30]. In

[31] it has been extended to solve the scattering of a pulsed plane-wave by conducting

cylinders in a semi-infinite medium, in order to study typical waveforms used at the

microwave frequencies in Ground Penetrating Radar technique.

In this paper, the theory for scattering of a monochromatic plane-wave by buried

cylinders through the CWA is generalized to a pulsed field non uniform in time and space

as the source of the scattering problem. Numerical results are given for a typical optical

waveform as A-scan radargrams (one-dimensional plots of the scattered field at a fixed

point as a function of time), or in the form of B-scans (two-dimensional maps obtained

from a scanning of the scattered field along a line). Electric properties of biological

tissues at optical frequencies have been considered in the simulations [36, 37] and an

accurate evaluation of the scattered optical beam is carried out in this framework.

2. Theoretical Approach

2.1. Scattering of a monochromatic plane wave

In the present section we recall the results pertinent to the scattering of a monochromatic

plane wave by a set of N cylinders, according to the CWA. The plane wave impinges onto

the planar interface between two different linear, isotropic, homogeneous, dielectric and

lossless semi-infinite media (from medium 0 to medium 1), as shown in Fig. 1. Refractive

indices of the two media will be denoted by n0 and n1, respectively. Without loss of

generality in the following we will consider, for simplicity, n0 = 1. Dielectric cylinders are

supposed infinitely long. They have circular cross sections with radii acq and refractive

indices ncq (q = 1, ..., N). The cylinder axes are parallel to the interface and the wave
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Figure 1. Geometry of the scattering problem and used coordinates.

vector of the incident plane wave is orthogonal to the cylinder axes, so that the overall

problem can be considered as two-dimensional.

The scattering problem is solved in terms of the scalar function V(x, z; t),

representing the y-directed electric field Ey(x, z; t) in case of TM polarization, or the

y-directed magnetic field Hy(x, z; t), for the TE polarization.

Since the field is monochromatic with angular frequency ω, we write the field

amplitude in the form

V(x, z; t) = V (x, z) exp (−iωt) , (1)

and focus our attention to the space-dependent part of the plane wave, namely, V (x, z).

Accordingly, the expression of the incident field will be taken as

Vin(x, z) = Ain exp
[
i
(
ki⊥x+ ki‖z

)]
, (2)

where ki⊥ and ki‖ are, respectively, the orthogonal and parallel components (with respect

to the interface) of the wave vector ki (having modulus k0 = 2π/λ, with λ being the

wavelength in vacuo), and Ain is the amplitude at x = z = 0. It will be also useful to

introduce a set of local reference frames, RFq (q = 1, ..., N), each of them centred on

the qth cylinder. Both rectangular, (xq, zq), and polar coordinates, (rq, θq), will be used.

The qth cylinder has axis located in (hq, dq) in the main reference frame (x, z), being

x = x+ hq and z = z + dq.

The proposed tehchnique is based on the use of suitable basis functions and takes

account of all the multiple interactions among the objects, and between objects and

interface. The solution is obtained by considering, in addition to the incident wave, six

different contributions to the total scattered field (see Fig. 2). In particular, the field in

medium 1 is expressed as the sum of three contributions, i.e.,

V1 = Vt + Vs + Vsr , (3)
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Figure 2. Different contributions to the total field.

that are, respectively:

- The field produced by the transmission of the incident plane wave through the

interface:

Vt(x, z) = T01(k
i
‖) Ain exp

[
i
(
kt⊥x+ kt‖z

)]
, (4)

where T01(k
i
‖) is the transmission coefficient from medium 0 to medium 1 and kt is the

transmitted wave vector in medium 1, both obtained from the Fresnel formulas [38].

- The field scattered by the cylinders:

Vs(x, z) =
N∑
q=1

+∞∑
m=−∞

cqmCWm(k1xq, k1zq) , (5)

expressed as the sum of the fields scattered by each cylinder, with k1 = n1k0 the

wavenumber in Medium 1. Such fields are written as the superposition, with unknown

coefficients cqm, of Cylindrical Waves (CWm) centered on the axis of each cylinder, de-

fined as

CWm(k1xq, k1zq) = Hm(k1r) e
imθq , (6)

with Hm being the Hankel function of the first kind and order m [39].

- The field produced by the reflection of Vs by the interface:

Vsr(x, z) =
N∑
q=1

+∞∑
m=−∞

cqmRWm [n1 (−xq − 2hq) , n1zq] , (7)
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Scattering of a pulsed light beams by dielectric buried cylinders 5

expressed in terms of Reflected Cylindrical Waves (RWm). The latter represent the field

produced by the reflection of each CWm from the interface and are defined as [16].

RWm(u, v) =
1

2π

∞∫
−∞

Γ10(k‖)Fm(u, k‖)e
ik‖vdk‖ , (8)

with Γ10(k‖) being the reflection coefficient from medium 1 to medium 0, and

Fm(u, k‖) =
2√

k20 − k2‖
e
i|u|
√
k20−k

2
‖ ×


eim arccos(k‖/k0), u ≥ 0 ;

e−im arccos(k‖/k0), u ≤ 0 .

(9)

An analogous decomposition holds in medium 0, where the field is thought of as

the superposition of three terms, namely,

V0 = Vin + Vr + Vst , (10)

where, in addition to the incident wave, we have:

- The field produced by the reflection of the incident plane wave from the interface:

Vr(x, z) = Γ01(k
i
‖) Ain exp

[
i
(
−ki⊥x+ ki‖z

)]
, (11)

with Γ01(k
i
‖) being the reflection coefficient from medium 0 to medium 1.

- The field produced by the transmission of Vs through the interface:

Vst(x, z) =
N∑
q=1

∞∑
m=−∞

imcqmTWm(x− hq, z − dq, hq) (12)

expressed in terms of Transmitted Cylindrical Waves (TWm), representing the field

produced by the transmission of each CWm through the interface, that are defined as

[16]:

TWm(u, v, h) =
1

2π

∞∫
−∞

T10(k‖)Fm(−n1h, k‖)e
−i
√
k20−(n1k‖)2(u+h)eik‖vdk‖ .(13)

Finally, the field transmitted inside the qth cylinder is written in term of Bessel

functions of the first kind, J`, with unknown expansion coefficients dq`:

Vcq(xq, zq) =
+∞∑
`=−∞

dq`J`(kcqrq)e
i`θq . (14)

with kcq = ncqk0.

Imposing the boundary conditions on the cylinders’ interface and following the

derivations presented in [26], the following linear system is obtained, having the

coefficients cqm as unknowns:

N∑
q=1

+∞∑
m=−∞

Dqp
` cqm = Mp

` (15)
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Scattering of a pulsed light beams by dielectric buried cylinders 6

where Dqp
m` = G

p(2)
` A

qp(1)
`m − G

p(1)
` A

qp(2)
`m and Mp

` = B
p(1)
` G

p(2)
` − B

p(2)
` G

p(1)
` , being (with

α = 1, 2)

A
qp(α)
`m = i−`T

(α)
` (k1ap)

{
CWm−`(k1xqp, k1zqp)(1− δqp) +

δqpδ`m

T
(α)
` (k1ap)

+
+∞∑
j=1

RWm+` [−n1 (hq + hp) , n1 (dp − dq)]
}

B
p(α)
` = −T01(ki‖) e

i

[
hp

√
1−(ki‖/k1)

2 + ki‖dp

]
T

(α)
` (k1ap)

(16)

where δ is the Kronecker symbol. Furthermore

G
p(1)
` = J`(kcpap)/H`(k1ap) , (17)

G
p(2)
` = gpJ

′
`(kcpap)/H

′

`(k1ap) , (18)

T
(1)
` (x) = J`(x)/H`(x) , (19)

T
(2)
` (x) = J ′`(x)/H

′

`(x) , (20)

where gp = ncp/n1 or n1/ncp for TM or TE polarization, respectively. The above

equations allow evaluating the field everywhere outside the cylinders.

To evaluate the field inside the cylinders, the coefficients dp` are needed. To this

aim, we insert Eqs. (16)-(18) into Eq. (15), and after some algebra obtain

dp` = n1
J`(k1ap)H

′
`(k1ap)− J ′`(k1ap)H`(k1ap)

n1J`(k1ap)H
′
`(k1ap)− kcpJ ′`(k1ap)H`(k1ap)

×
{

N∑
q=1

+∞∑
m=−∞

i−`cqm
{
CWm−`(k1xqp, k1zqp)(1− δqp)

+
+∞∑
j=1

RWm+` [−n1 (hq + hp) , n1 (dp − dq)]
}

+ T01(k
i
‖)e

i

[
hp

√
1−(ki‖/k1)

2 + ki‖dp

]}
.

(21)

The knowledge of the cqm and d` coefficients gives the total electromagnetic field in

any point of space and for both polarizations.

2.2. Scattering of a field nonuniform in time and space

The theory presented in Section 2.1 is generalized here to the case of a pulsed and

spatially nonuniform source field. Due to the two-dimensional nature of the problem,

we consider the field distribution as independent from the y-coordinate.

If the input field is not a plane wave, even in the case of free propagation, the

temporal evolution of the pulse depends on the point where the field is detected, so

that some care has to be put to define the temporal shape of the pulse unambiguously.

In our model, we suppose that a certain plane exists in the half-space occupied by
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Scattering of a pulsed light beams by dielectric buried cylinders 7

medium 0 where the field presents the same temporal behavior at any point, except for

an amplitude factor. In other terms, across such plane, the time and space dependences

of the field factorize. In the first part of this section, for simplicity, we will take such a

plane as coincident with the planar interface between the two media. The general case

will be treated later on.

Denoting by ω0 the central frequency of the pulse, under the above hypothesis the

amplitude of the incident field across the plane x = 0 takes the form

Vin(0, z; t) = B(z)S(t) exp (−iω0t) , (22)

where B(z) gives the spatial distribution of the field across the plane and S(t) the

temporal envelope of the pulse.

Equation (22) can be Fourier transformed, both in time and in space, giving rise

to the following expansion:

Vin(0, z; t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

b(k‖) s(ω − ω0) e
i(k‖z−ωt) dω dk‖ , (23)

with

s(ω) =

∞∫
−∞

S(t) eiωt dt , (24)

and

b(k‖) =

∞∫
−∞

B(z) e−ik‖z dz , (25)

expressing the incident field as a continuous superposition of monochromatic plane

waves, with angular frequency ω, wave vector (k‖, k⊥), being k⊥ =
√
k20 − k2‖, and

amplitude

Ain(k‖;ω) = b(k‖) s(ω − ω0) . (26)

The approach recalled in Sec. 2.2 can be then applied to the case of a temporally and

spatially nonuniform field, by solving the scattering problem for each of the plane waves

composing the incident field, and summing up the obtained solutions. In a practical

application of the method, of course, time and space spectra of the input field need to

be discretized and truncated, so that the scattered field will be obtained as the sum of

a finite number of terms.

Now, we are able to evaluate the plane-wave spectrum of the input field for the

more general case in which the plane where the time and space dependences of the

field factorize [see Eq. (22)] does not coincide with z = 0. This model could be more

appropriate when a light beam impinges onto the interface obliquely. Geometry and

notations are reported in Fig. 3.
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Scattering of a pulsed light beams by dielectric buried cylinders 8

Figure 3. Geometry of the scattering problem with a pulsed beam as excitation.

In such a case, the expressions of the incident field obtained above hold in the

reference frame (O′, x′, z′). In particular, Equation (23) reads

V ′in(0, z′; t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

b′(k′‖) s(ω − ω0) e
i(k′‖z

′−ωt)
dω dk′‖ , (27)

where all primed quantities refer to the rotated reference frame. All we have to do is to

write Eq. (27) in the reference frame (O, x, z), using the pertinent transformation rules,

i.e., 
z′ = −x sinϕ+ z cosϕ− z0 ,

x′ = x cosϕ+ z sinϕ− x0 ,
(28)

and 
k′‖ = −k⊥ sinϕ+ k‖ cosϕ ,

k′⊥ = k⊥ cosϕ+ k‖ sinϕ .
(29)

After some analytical manipulations, the following result is obtained:

Vin(0, z; t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

b′(−k⊥ sinϕ+ k‖ cosϕ) s(ω − ω0)

× e−i(k‖x0−k⊥z0) ei(k‖z−ωt)
(
k‖
k⊥

sinϕ+ cosϕ

)
dω dk‖ ,

(30)

meaning that the plane-wave spectrum of the incident field in the reference frame (0, x, z)

has to be taken as

Ain(k‖;ω) = b′(−k⊥ sinϕ+ k‖ cosϕ)

×
(
k‖
k⊥

sinϕ+ cosϕ

)
e−i(k‖x0−k⊥z0) s(ω − ω0) .

(31)
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Scattering of a pulsed light beams by dielectric buried cylinders 9

In the next Section, the presented approach will be implemented in practical numerical

cases.

3. Numerical results for a pulsed Gaussian beam

The technique presented in previous Sections is applied to the case of an incident

Gaussian beam. The latter propagates along the x′-axis, has waist size w0 and center

at the point (x0, z0). Therefore, its amplitude along the z′ axis has the form

B′(z′) = B0 e
−(z′/w0)

2

, (32)

corresponding to a spatial spectrum given by:

b′(k′‖) = B0

√
π w0 e

−
(
w0k′‖/2

)2

. (33)

The temporal shape of the pulse is also chosen as Gaussian, i.e.,

S(t) = e−(t/σ)
2

, (34)

corresponding to the following frequency spectrum:

s(ω) =
√
π σ e−(σω/2)

2

. (35)

The parameter σ represents the duration of the Gaussian pulse and can be related to

the FWHM (Full Width Half Maximum) of the frequency spectrum, ∆ω, through the

relation

σ =
4
√

ln 2

∆ω
. (36)

The FWHM of the temporal spectrum is often expressed in terms of wavelengths (∆λ)

and, for narrow-band pulses with central wavelength λ0, it is evaluated as

∆λ =
λ20 ∆ω

2πc
. (37)

From Eq. (31) and the above assumptions, the amplitude of the typical

monochromatic plane wave of the expansion turns out to be

Ain(k‖;ω) = B0πσw0 exp

[
−w

2
0

4

(
−k⊥ sinϕ+ k‖ cosϕ

)2]

×
(
k‖
k⊥

sinϕ+ cosϕ

)
e−i(k‖x0−k⊥z0)

× exp

[
−σ

2

4
(ω − ω0)

2

]
.

(38)

In a practical application of the method presented in Sec. 2,2, both the space

and temporal spectra of the incident field will be discretized, so that the latter will

be described through a suitably sized discrete and finite set of plane waves, and the

involved Fourier transforms will be replaced by Fast Fourier Transforms [40].
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Scattering of a pulsed light beams by dielectric buried cylinders 10

Figure 4. Geometrical layout for B-scans: polar, along a circumference surrounding

the cylinder (curve P), and linear along a segment parallel to the interface (line L).

Another approximation concerns the sums required to solve the scattering problem,

coming from the expansion of the involved fields in terms of cylindrical waves (see

Sec. 2.1). Such sums have an infinite number of terms even for the case of single

monochromatic incident plane wave. In our simulations, such sums have been truncated

to the integer part of 3k1amax, where amax is the radius of the largest cylinder, as a good

compromise between accuracy and computational heaviness [41].

The method proposed in Section 2 can be applied to calculate the scattered field

by a target in those applications where broadband light is used [9],[7]. The scattering

problem is solved first for an incident pulsed plane wave, and this will be used as the

reference case. The plane wave impinges normally (ϕ = 0) onto the interface and has

TM polarization. A broadband light source is modelled, given by a Gaussian pulse of

central wavelength λ0 = 1300 nm, and half-bandwidth ∆λ = 400 nm, corresponding to

a pulsed duration σ = 7.5× 10−3 ps [9].

A single scattering cylinder is considered, having radius a, refractive index nc = 1.5,

and axis located at a distance h from the interface. The hosting medium has refractive

index n1 = 1.4. In the simulations, sizes and permittivities of the cylinder are chosen

to be compatible with the modelling of inclusions, such as small vessels, in biological

tissues [6]-[9]. Also the small permittivity contrast between the cylindrical inclusion

and the embedding medium is typical of biological systems at optical frequencies. The

intensity of the scattered field is represented as a polar B-scan [9], obtained on moving

the receiver point along a circle of radius ρ, centered on the cylinder axis (curve P in

Fig. 4). The intensity is normalized to its maximum value and expressed in dB. Polar

B-scans are reported in Fig. 5 for ρ = 25 µm and different values of a and h. These

polar plots give an understanding of the scattering paths under plane-wave illumination.

Differently from [9], where a polar bscan was evaluated for one cylinder in free space, in
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Scattering of a pulsed light beams by dielectric buried cylinders 11

Figure 5. Polar B-scan of the normalized radiation intensity in medium 1 (in dB)

along a circumference of radius ρ = 25 µm, as function of θ (between 0 and 360◦)

and time (between 0 and 1 ps). Incident plane wave with normal incidence and TM

polarization. Refractive indices: n1 = 1.4 and nc = 1.5. Three different values of the

cylinder’s radius (a = 5, 10, 20 µm) and depths (h = 30, 60, 90 µm).

the following a discontinuity in the propagation media of the source field is introduced,

as the source is excited in an air-filled medium, whereas the cylinder is embedded in a

medium with different permittivity.

Various contributions to the total scattered field can be distinguished in the plots

in Fig. 5. In order to better identify the single contributions, some A-scans, extracted

from the plots of Fig. 5 (with a = 5 µm and h = 30, 60, and 90 µm), are shown in Fig. 6.

The curves report the field intensity, as a function of time, revealed by a detector at a

fixed position in space. In this case, such a position is at ρ = 25 µm and θ = 180◦, so

that the curves correspond to the central horizontal line of the plots in the first column

of Fig. 5.

In those A-scans, peaks of the radiation intensity can be identified on the basis of

the delay that they present with respect to the incident pulse. Peaks are labeled with

letters from A to E, with the following legend: A is the earliest pulse and corresponds to

the field scattered from the front of the cylinder; B is the field scattered from its backside;

C and D correspond to the reflection of the peaks A and B, respectively, from the plane

interface; E comes from the surface wave travelling along the cylinder boundary, and has

an arrival time very close to B. As in [9], the pulses A-B give the cylinder cross-section,

as the time delay between the two peaks returns the optical distance ∆z = 2nca, that

may be evaluated also through a ray tracing approach. As to the E contribution, it can

instead be calculated only through a full-wave solution of the Maxwell’s equations. In

Fig. 6(c), C and D are no longer visible because their arrival times are beyond the shown

time window. The pulses F and G, appearing there, are the second- and third-order

reflections from the interface of the field scattered from the backside of the cylinder.
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Scattering of a pulsed light beams by dielectric buried cylinders 12

Figure 6. A-scan evaluated at θ = 180◦ and ρ = 25 µm Incident plane wave with

normal incidence and TM polarization. Refractive indices: n1 = 1.4 and nc = 1.5.

Cylinder’s radius is a = 5 µm at three depths : a) h = 30 µm; b) h = 60 µm; c) h = 90

µm.

In the next example the incident field is a pulsed Gaussian beam, having TM

polarization and spatial amplitude given by Eq. (32). The beam impinges normally

and is focused onto the surface, so that its waist plane coincides with the surface.

The temporal shape of the pulse is the same as that used in the previous example,

while several values of waist size and lateral position will be considered. As for the

previous example, a single scattering cylinder is present, having radius a, refractive

index nc = 1.5, and axis located at a distance h = 30 µm from the interface. Its lateral

position is kept fixed (d = 0). The hosting medium has refractive index n1 = 1.4.

B-scans of the normalized scattered intensity are reported in Figs. 7 and 8 for a = 5

µm and a = 20 µm, respectively. Such plots can be compared to the ones in Figs 5(a)

and 5(c), which refer to the same choices of the parameters and an incident plane wave.

In Fig. 7, beam waist sizes are w0 =10, 5, and 2.5 µm, while the beam is shifted

from the position z0 = 0 to z0 = 5µm, and z0 = 10µm. With the beam in the central

position (z0 = 0), all the plots clearly show the scattered field intensities from the top

and backside of the cylinder, with a pattern analogous to the one observed with the

plane-wave source (Fig. 5(a)). The reflections by the interface relevant to these two
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Figure 7. Polar B-scan of the radiation intensity in medium 1 (in dB) along a

circumference of radius ρ = 25 µm surrounding the cylinder, as function of θ (between

0 and 360◦) and time (between 0 and 1 ps). Impinging Gaussian beam with normal

incidence and waist on the surface, in TM polarization. Refractive indices: n1 = 1.4

and nc = 1.5. Cylinder’s radius is a = 5 µm and depth is h = 30 µm, for three values

of the beam waist (w0 = 10, 5, 2.5 µm) and three values of the lateral position of the

waist (z0=0, 5, 10 µm).

Figure 8. Polar B-scan of the radiation intensity in medium 1 (in dB) along a

circumference of radius ρ = 25 µm surrounding the cylinder, as function of θ (between

0 and 360◦) and time (between 0 and 1 ps). Impinging Gaussian beam with normal

incidence and waist on the surface, in TM polarization. Refractive indices: n1 = 1.4

and nc = 1.5. Cylinder’s radius a = 20 µm and depth h = 30 µm, for three values

of the beam waist (w0 = 5, 10, 20 µm) and three values of the lateral position of the

waist (z0=0, 5, 10 µm).
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Figure 9. B-scan radargrams of the transmitted radiation-intensity for a single-

cylinder layout (h = 30 µm, n1 = 1.4, nc = 1.5), incident Gaussian beam with waist

in (x0 = 0, z0 = 0 µm), w0 = 5 µm, normal incidence, TM polarization. Receivers are

along a line parallel to the interface at x = −10 µm. a) a = 5 µm; b) a = 20 µm.

scattering contributions are also visible, especially with the smallest values of waist size,

namely, w0 = 5µm (Fig. 7(b)) and w0 = 2.5µm (Fig. 7(c)) .

On moving the cylinder center away from the central position, radiation patterns

become less and less symmetric, especially for small values of the beam spot size (second

and third column of Fig. 7), but a radiation peak remains for small (and close to 360◦)

values of θ, corresponding to the back of the cylinder. Furthermore, on comparing

the absolute values of the reported radiation intensities, it is apparent that the latter

becomes negligible when the incident beam does not intercept the cylinder in a significant

way (see Fig. 7(i)).

In Fig. 8, results analogous to those in Fig. 7 are reported. In this case the cylinder

radius is larger (a = 20 µm) and the considered values of the beam waist are w0 = 20,

10, and 5µm. The obtained results can be compared to the analogous ones, pertinent

to the scattering of a pulsed plane wave, shown in (Fig. 5(a)).

For the same source field and geometrical layout of Figs. 7 and 8, the pattern

displayed in linear B-scans are now presented. The incident beam impinges normally

onto the surface, has waist size w0 = 5 µm and beam center in (0,0). The scattered

radiation is evaluated along a segment in medium 0, parallel to the surface, 10 µm away

from it, from z = −25 µm to z = 25 µm (line L in Fig. 4). Figure 9(a) shows the linear

B-scan for a cylinder with radius a = 5 µm, and exhibits the typical pattern relevant to

targets of finite size. Two hyperbola are visibile for the scattered-transmitted radiation-

intensity in medium 0: the first one is the echo of the direct scattering from the cylinder,
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followed by a delayed hyperbola, relevant to the intensity scattered from its backside.

In Fig. 9(b), the cylinder has a larger radius (a = 20 µm). The two hyperbola have

the same physical meaning as in the previous case but now, due to the larger size of

the target, the first hyperbola is detected at earlier arrival times. The second one is

delayed, due to the longer travel time through the cylinder.

4. Conclusions

In this paper, a technique for evaluating the field produced by the scattering of a pulsed

light beam by a set of dielectric cylinders placed below a flat interface has been presented.

Solution of the problem has been derived on an analytical basis, on extending the

CWA approach to the case of fields nonuniform in space and in time. Results have

been presented for both plane-wave and Gaussian-beam excitation, with Gaussian pulse

temporal shape. The choice of geometrical and physical parameters show that the

method can be used for simulations in biological applications.
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Page 16 of 17AUTHOR SUBMITTED MANUSCRIPT - JOPT-106148.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Scattering of a pulsed light beams by dielectric buried cylinders 17

of cylindrical functions,” Opt. Comm., 95, 192-198 (1993).

[33] R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a

perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt.

Soc. Am. A, 13, 483-493 (1996).

[34] R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a set

of perfectly conducting circular cylinders in the presence of a plane surface,” J. Opt. Soc. Am. A,

13, 2441-2452 (1996).

[35] R. Borghi, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a dielectric

circular cylinder parallel to a general reflecting flat surface,” J. Opt. Soc. Am. A, 14, 15001504

(1997).

[36] S.L. Jacques and S.A. Prahl“Modeling optical and thermal distributions in tissue during laser

irradiation,” Lasers in Surg. Med. 6, 494-503 (1987).

[37] T.K. Biswas and T.M. Luu,“In vivo MR measurement of refractive index, relative water content

and T2 relaxation time of various brain lesions with clinical application to discriminate brain

lesions,” Internat. J. Radiol. 13 (2011).

[38] M. Born, and E. Wolfe, Principles of Optics, 7th edition, Cambridge University Press, 1999.

[39] C.A. Balanis, Advanced Engineering Electromagnetics, 2nd edition, Wiley, 2012.

[40] E.O. Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall, USA, 1988.

[41] A. Z. Elsherbeni, “A comparative study of two-dimensional multiple scattering techniques,” Radio

Sci., 29, 1023-1033 (1994).

Page 17 of 17 AUTHOR SUBMITTED MANUSCRIPT - JOPT-106148.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


